11 resultados para cardiovascular disease

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the net 5 year effects of intervention of a community based demonstration project, the Heartbeat Wales programme, on modifiable behavioural risks for prevention of cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To explore the usefulness of epidemiological data to guide clinical practice by seeking an answer to the question “What is the risk of cardiovascular disease among users of currently available, low dose, combined oral contraceptives who are aged less than 35 years, do not smoke, and do not have a medical condition known to increase the risk of vascular disease?”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare the implications of four widely used cholesterol screening and treatment guidelines by applying them to a population in the United Kingdom.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increases in plasma cholesterol are associated with progressive increases in the risk of atherosclerotic cardiovascular disease. In humans plasma cholesterol is contained primarily in apolipoprotein B-based low density lipoprotein (LDL). Cells stop making the high-affinity receptor responsible for LDL removal as they become cholesterol replete; this slows removal of LDL from plasma and elevates plasma LDL. As a result of this delayed uptake, hypercholesterolemic individuals not only have more LDL but have significantly older LDL. Oxidative modification of LDL enhances their atherogenicity. This study sought to determine whether increased time spent in circulation, or aging, by lipoprotein particles altered their susceptibility to oxidative modification. Controlled synchronous production of distinctive apolipoprotein B lipoproteins (yolk-specific very low density lipoproteins; VLDLy) with a single estrogen injection into young turkeys was used to model LDL aging in vivo. VLDLy remained in circulation for at least 10 days. Susceptibility to oxidation in vitro was highly dependent on lipoprotein age in vivo. Oxidation, measured as hexanal release from n-6 fatty acids in VLDLy, increased from 13.3 +/- 5.5 nmol of 2-day-old VLDLy per ml, to 108 +/- 17 nmol of 7-day-old VLDLy per ml. Oxidative instability was not due to tocopherol depletion or conversion to a more unsaturated fatty acid composition. These findings establish mathematically describable linkages between the variables of LDL concentration and LDL oxidation. The proposed mathematical models suggest a unified investigative approach to determine the mechanisms for acceleration of atherosclerotic cardiovascular disease risk as plasma cholesterol rises.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endothelial-selective delivery of therapeutic agents, such as drugs or genes, would provide a useful tool for modifying vascular function in various disease states. A potential molecular target for such delivery is E-selectin, an endothelial-specific cell surface molecule expressed at sites of activation in vivo and inducible in cultured human umbilical vein endothelial cells (HUVEC) by treatment with cytokines such as recombinant human interleukin 1β (IL-1β). Liposomes of various types (classical, sterically stabilized, cationic, pH-sensitive), each conjugated with mAb H18/7, a murine monoclonal antibody that recognizes the extracellular domain of E-selectin, bound selectively and specifically to IL-1β-activated HUVEC at levels up to 275-fold higher than to unactivated HUVEC. E-selectin-targeted immunoliposomes appeared in acidic, perinuclear vesicles 2–4 hr after binding to the cell surface, consistent with internalization via the endosome/lysosome pathway. Activated HUVEC incubated with E-selectin-targeted immunoliposomes, loaded with the cytotoxic agent doxorubicin, exhibited significantly decreased cell survival, whereas unactivated HUVEC were unaffected by such treatment. These results demonstrate the feasibility of exploiting cell surface activation markers for the endothelial-selective delivery of biologically active agents via immunoliposomes. Application of this targeting approach in vivo may lead to novel therapeutic strategies in the treatment of cardiovascular disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human aging is impacted severely by cardiovascular disease and significantly but less overtly by renal dysfunction. Advanced glycation endproducts (AGEs) have been linked to tissue damage in diabetes and aging, and the AGE inhibitor aminoguanidine (AG) has been shown to inhibit renal and vascular pathology in diabetic animals. In the present study, the effects of AG on aging-related renal and vascular changes and AGE accumulation were studied in nondiabetic female Sprague-Dawley (S-D) and Fischer 344 (F344) rats treated with AG (0.1% in drinking water) for 18 mo. Significant increases in the AGE content in aged cardiac (P < 0.05), aortic (P < 0.005), and renal (P < 0.05) tissues were prevented by AG treatment (P < 0.05 for each tissue). A marked age-linked vasodilatory impairment in response to acetylcholine and nitroglycerine was prevented by AG treatment (P < 0.005), as was an age-related cardiac hypertrophy evident in both strains (P < 0.05). While creatinine clearance was unaffected by aging in these studies, the AGE/ creatinine clearance ratio declined 3-fold in old rats vs. young rats (S-D, P < 0.05; F344, P < 0.01), while it declined significantly less in AG-treated old rats (P < 0.05). In S-D but not in F344 rats, a significant (P < 0.05) age-linked 24% nephron loss was completely prevented by AG treatment, and glomerular sclerosis was markedly suppressed (P < 0.01). Age-related albuminuria and proteinuria were markedly inhibited by AG in both strains (S-D, P < 0.01; F344, P < 0.01). These data suggest that early interference with AGE accumulation by AG treatment may impart significant protection against the progressive cardiovascular and renal decline afflicting the last decades of life.